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Abstract 

This is the manual for a collection of programs that can be used to  invert angled-averaged (i.e. one dimen- 
sional) two-particle correlation functions. This package consists of several programs that generate kernel 
matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation 
functions from test sources of various types and the program that actually inverts the data using the kernel 
matrix. 
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Chapter 1 

INTRODUCTION 

This manual outlines the set of programs that we 
developed to  invert angle-averaged two-particle cor- 
relation functions. In the following sections, we will 
outline the purpose of the code, how it works, how to 
install and run the code, and indicate how to extend 
it. 

You are free to use the codes in your analysis 
provided that you reference either this manual or 
references [l, 2, 31 in any publications using results 
obtained with these codes. We are not responsible 
for any misuse of these codes. Feel free to con- 
tact either of us if you have any questions, com- 
ments or suggestions. Our emails are David Brown 
at  brownl’7O@llnl.gov and Pawel Danielewicz at 
danielewicz@nscl.msu.edu. If you have bug-fixes 
or add new features or kernels t o  your version of the 
code please contact David Brown, so that we can in- 
corporate the changes in future releases. 

The outline of this manual is as follows. First, for 
the remainder of this chapter we will explain the the- 
ory behind the imaging codes. Second, in Chapters 2- 
4, we will explain what is needed to run the codes. 
This includes explaining how to install and run the 
codes (Chap. 2), an example calculation (Chap. 3)  
and a description of the input options (Chap. 4). 
Next, in Chapters 5-7 we explain more about how to 
run the various codes and control scripts. In Chap. 5 
we elaborate on the imaging codes, in Chap. 6 we ex- 
plain how the kernel generators work, and in Chap. 7 
we detail two ways to test the imaging codes. Follow- 
ing this, Chap. 8 is a list of Frequently Asked Ques- 
tions. Finally, we will conclude in Chap. 9. There 
are also three appendices listing various files in the 
distribution. 

1.1 Basic Theory 

1.1.1 The Koonin-Pratt Equation 

Our starting point is the ratio of the two particle 
spectrum to two uncorrelated single particle spec- 
tra, a.k.a. the two particle correlation function, often 
measured in heavy-ion reactions: 

Here P = p1+ p2 is the total momentum of the pair 
and q’ = $(pi -pi) is the relative momentum of the 
pair in the pair center of mass (CM) frame (denoted 
by the primes). 

Extracting the source function for a pair of iden- 
tical particles, Sp(r’), begins by noting that Sp(r’) is 
related to  this experimentally measured two-particle 
correlation, Cp(q’) (or Rp(q’), its deviation from l), 
through the so-called Koonin-Pratt equation [4, 51 : 

Rp(q‘) E Cp(q’) - 1 = dr’K(q‘,r’)Sp(r’). 

(1.2) 
I 

Thus, “imaging the source’’ means somehow inverting 
this equation. In (1.2), and the kernel of the integral 
equation is 

The wavefunction, @(-I, describes the propagation of 
the pair from a relative separation of r‘ in the pair 
CM to the detector with relative momentum q’. The 
source function itself is the probability of emitting 
the pair a distance of r’ apart, in the pair CM frame. 
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1.1.2 The Source Function 

In order to get a better understanding of what the 
source function is, consider the emission function 
D(r,p). The emission function is the probability of 
emitting a single particle at space-time point T with 
momentum p. We may write it in terms of the par- 
ticle emission rates: 

This is actually not a true probability as it is a Wigner 
function, however we may identify the emission rates 
with the freeze-out distributions in a transport code. 
In fact, this is what is done in Scott Pratt’s CRAB 
code [6]. 

Next, we may define the relative distance distri- 
bution, d(r, P/2) ,  in terms of the emission function: 

d(r ,  P/2)  = d4R D(R + r/2, P /2)D(R - ~ / 2 ,  P/2)  

The relative distance distribution is the probability of 
emitting a pair with a space-time separation T .  Each 
particle has approximately momentum P / 2  (in the 
smoothness approximation, the slight difference be- 
tween using p1, p1 and P / 2  is ignored). In order 
t o  write down Eq. (1.5), we need to assume the each 
particle comprising the pair is independently emit- 
ted. This “chaoticity” assumption is not needed for 
the imaging to work, but is needed in order to make 
contact with semi-classical transport models. 

Finally, we may define the source function. To 
do this, we boost to  the pair CM frame (noting that 
P‘/2 = 0 in this frame) and integrate out the CM 
time: 

(1.5) 
s 

Sp(r’) = drb & ( T I ,  0). (1.6) s 
This time integral is a reflection of the fact that the 
squared wavefunction of the pair is independent of 
the relative emission time in the pair CM. This time 
integral does have dramatic consequences, for exam- 
ple we can not distinguish between the two scenarios 
pictured in Fig. 1.1. As a final comment, the source 
function is normalized: 

This is simply a statement of conservation of proba- 
bility. 

1.1.3 

A one dimensional correlation function is usually tab- 
ulated as a function of qinv = ,/-/2. For- 
tunately, the Oth component of the relative momen- 
tum vanishes in the pair CM frame for identical par- 
ticles giving qinv = Iq‘l = q. Thus, we may angle 
average the 3d Koonin-Pratt equation to obtain the 
same equation for Id correlations. We will now illus- 
trate this. 

First, expand the full 3d source and correlation in 
spherical harmonics, giving 

Recasting the Problem in Id 

e=o m=-e 

and 
# e  

e=o m=-t 
C(q> = ctm(q)Yem(G) (1.9) 

From here onward, we will suppress the P subscript 
in all quantities. The Oth term in both expansions 
is the angle average of the respective function. Note 
that the kernel only depends on lql,lrl, and y (the 
angle between q and r) [l]. This allows us to expand 
the kernel in Legendre polynomials: 

00 

K(q, r) = E ( 2 h  + 1)Kx(q, r ) ~ ~ ( c o s y )  (1.10) 

With this, the integrals can easily be done with 
the aid of the spherical harmonic addition theorem. 
In the end, we find 

X=O 

00 

R(4) = C(q) - 1 = 4.1 drr2Ko(q,r)S(r). (1.11) 

and this is the equation we will image. Here, the 
angle-averaged kernel is 

KO(4,r) = /d(cosy) ( 10&-)(r)12 - 1) . (1.12) 

The explicit expressions of the angle-averaged kernels 
for each pair type are shown in Chap. 6. 

1.1.4 Limitations of the Formalism 
There are several limitations of the Koonin-Pratt for- 
malism that may affect either the imaging results or 
the interpretation of the resulting images. Unfortu- 
nately, these issues have not been fully mapped out, 
so at best we can refer you to the literature if you 
need more information: 
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Figure 1.1: Two emission scenarios that give the same separation of emission points. On the left, the pair is 
emitted simultaneously with a relative separation r. On the right, the first particle is emitted with a relative 
velocity v and the second particle is emitted At later a distance of ro from the first particle. The combined 
spatio-temporal separation of emission is r = ro + vAt, giving a separation identical to  that in the scenario 
on the left. 

1. 

2. 

3. 

4. 

5 .  

Third body Coulomb effects [7, 81. 

Position-momentum correlations (eg. flow, 
opacity, etc.) [9]. 

Three(and higher) body quantum statistical ef- 
fects [lo, 11, 12, 131. 

Smoothness approximations [14, 15, 161. 

“Chaoticity,” in other words, the independent 
emission hypothesis [17]. 

Also, there are several review articles that may prove 
helpful [18, 19, 201. 

1.2 Inverting the Koonin-Pratt 
Equation 

In this section, we describe the mathematical consid- 
erations behind our inversion code. Although we will 
transform the inversion of the Koonin-Pratt equation 
to  a simple linear matrix inversion problem, there are 
several factors that will complicate our work. First, 
our the data contains both noise and uncertainty. 
Both must be dealt with using a least-square ap- 
proach to the inversion. Since the kernel is the pair 
wavefunction squared, it is basically a distorted sine 
function. The distortion arises from the pair interac- 
tion potential. The similarity of our integral trans- 
form to a Fourier Transform problem means that we 
must pay attention to  sampling issues. In particu- 
lar, we must be careful in choosing our representa- 
tion of the source. We will use Basis splines (a.k.a. 
b-splines) to represent our source because we can ad- 
just the knots of the b-splines in order to optimize 

the resolution. Finally, since this inversion problem 
is ill-posed, we will use constraints to  help stabilize 
the inversion. All of this is discussed in Ref. [3] in 
more detail. 

1.2.1 Recasting the Equation 

In our calculations, we expand the imaged source in 
a function basis: 

N M  

S(T) = SiBi(.). (1.13) 
i=l  

Here Si are the N M  source coefficients of the source 
with the basis functions Bi(r ) .  In this basis, the error 
on S ( r )  is given by 

(1.14) 

where A2Sij is the covariance matrix of source coef- 
ficients determined during the inversion process. 

The experimental data is also binned (with the 
number of bins being N D )  and therefore we must 
also average the kernel over these bins. Our inver- 
sion problem then reduces to the following equation: 

N M  
Ri 5 R(qi) = KijSj, (1.15) 

j=1 

or in matrix notation: 

(1.16) 
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Here, the kernel matrix is 

4n / q i + * R i l Z  d q  /m 
K . .  - - dr r2  K ( 4 ,  r)Bj ( r )  . 
” -  Aq q; -Aq .12  

(1.17) 
We call the center of the ith bin qi and the width 
of the ith bin is Aqi. Our source vector is made of 
the Sj coefficients of the basis function representation 
of the source and our data vector is made of the Ri 
correlation values. 

1.2.2 A Least-squares Solution 
Once we have chosen a representation of the source 
and converted the inversion problem into the matrix 
inversion of Eq. (1.16), we proceed as in Refs. [l, 21 
and extract the source. To obtain the coefficients of 
the source, we seek the source that minimizes the x2:  

x 2  = ( K  . S - Robs)T. ( A2R)-l  . ( K  . S -Robs) (1.18) 

Here Robs is the vector of data values and A 2 R  is 
the full data covariance matrix. Typically A2R is 
assumed to be diagonal, although it need not be. 

The source that minimizes the x 2  is: 
S = A 2 S .  KT . (A2R)-I .Robs 

A z s  = ( K T .  (A2R)- l  . K)-l  

(1.19) 

(1.20) 

The covariance matrix of this source is: 

When we image, we are really finding a probabil- 
ity density for the source given the correlation data 
rather than the source itself. The set of source coef- 
ficients and the covariance matrix of the source char- 
acterize the height and width of this probability dis- 
tribution. In the end, we use the source coefficients 
as an estimator of the true source. 

1.2.3 Fourier Theory Considerations 
Although we have a solution to  the imaging prob- 
lem in Eqs. (1.19) and (1.20), the solution is in- 
complete with out specifying the basis of the source. 
Given that the identical particle kernels in Eq. (1.2) 
or (1.11) are Fourier transform kernels a t  large dis- 
tances, we expect our transforms to behave like 
Fourier transforms. Thus, if we expand the source 
in box-splines, i.e. discretize it, then Eq. (1.16) is 
nearly a finite Fourier transform. In this case, the 
Sampling Theorem says that the binning in q and r 
spaces are related: 

hC?T hC7T 
(1.21) Ar = - and Aq = -. 

qmax rmax 

Here qmax = NAq, r,,, = N A r  and N M  = N o  E N 
is the number of bins in both the r and q spaces. 

Using these relations, we may get a feeling for how 
structures in the data affect the imaged source. For 
example, the low-q structure in the data sets the large 
length scale behavior of the source. Conversely, the 
high-q portion of the data sets the short length scale 
behavior of the source and therefore sets the size of 
the smallest features features we could hope to re- 
solve in the source. For example, if the correlation 
dies off around a q x 80 MeV/c, then we should not 
expect to  resolve structure smaller than Ar x 8 fm. 
Owing to the fact that our kernel is not a trigonomet- 
ric function in general, these estimates are qualitative 
at best. 

1.2.4 Representing the Source 

Rather than use the simple box-spline basis, we 
choose to represent the source function in a Basis 
spline (a.k.a. b-spline) basis. Several b-splines are 
pictured in Fig. 1.2. B-splines are piecewise poly- 
nomials and are continuous up to  the degree of these 
polynomials. This basis has many features that make 
it ideal for the imaging problem: 

It can efficiently encode complicated functions. 

Basis functions can be evaluated quickly. 

The degree of continuity of the b-splines can be 
adjusted in several ways. 

Natural generalization of the box-spline basis 
as the Oth order b-spline is the box-spline. 

By varying the knots (basically the “edge of a 
bin” of a box-spline) we can change the resolu- 
tion of the b-splines. 

For details on b-splines, see Ref. [21] and for detail on 
how we use it in the inversion problem, see Ref. [3]. 
The actual implementation that we use is CERN- 
LIB’S NORBAS package, E210 [22]. 

In the b-spline basis, the concept of the “edge of a 
bin” in the box-spline basis is replaced with the con- 
cept of a knot. A knot is simply the place where the 
polynomials that make up the b-spline are patched 
together. In the “optimized discretization” scheme 
of Ref. [2], the edges of the box-splines are varied to  
minimize the relative error of the source. We may 
generalize this idea to the b-splines easily by varying 
the locations of the knots. 
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Figure 1.2: Sample plots of Nkh degree b-splines. In all panels, the knots are marked by carets and the knots 
a t  r = 0 are actually N B  + 1 regular knots piled together. 

1.2.5 Optimal Knots for the B-splines 

Since the kernel is not truly a Fourier Transform, we 
must ask whether the finite sized binning implied by 
Fourier theory is optimal. Also owing to  various ex- 
perimental effects, we may be insensitive to various 
regions in T space and may wish to  lower the resolu- 
tion in these places. To deal with these two problems, 
we use the generalization the “optimized discretiza- 
tion” scheme of Ref. [2] detailed in Ref. [3] .  

First, we notice that the model covariance matrix 
of Eq. (1.20) depends on the kernel of the inversion, 
the error on the data and whatever scheme we use to  
represent the source, but not on the correlation data 
or the source itself. For a given kernel and set of data 
errors, we are free to change our representation of the 
source in order t o  minimize the error of the source. 
In particular, we may vary the location of the knots 
(at least not the knots fixed at the endpoints of the 
imaging region) to minimize the error of the source, 
ASj = ,/=, relative to some dummy source: 

(1.22) 

The coefficients Sjlummy are the expansion of a 
dummy source in b-splines. In this minimization, 
the first and last multiple knots are held fixed and 
the positions of all of the other knots are varied. 
The dummy source itself is chosen to  be big roughly 
where one expects the source to  be big and small 
where one expects the source to  be small. Since the 
details of the dummy source are not important] we 
choose a dummy source to be an exponential with 
radius RduTnmy = 3.5 fm given by Sdurnrny(r) cc 
exp ( -r/Rdummy). 

1.2.6 Constraints 
In order to further stabilize the inversion, we can take 
advantage of prior information in the form of con- 
straints, as first suggested by Tikhonov [23]. Here we 
focus on equality constraints. An equality constraint 
is a condition on the vector of source coefficients that 
has the generic form C . S = c .  One example of such a 
constraint is that the source has slope 0 at the origin, 
in which case we write 

N.9 

S’(r + 0) = SiBi(r -+ 01 = 0. (1.23) 
i= 1 
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Other useful constraints are detailed in Section 5.2. 

just adding a penalty term to the x2: 
We can implement these types of constraints by 

x 2  + X(C . s - c)2 (1.24) 

Here the X is a trade-off parameter and we may vary 
it in order to emphasize stability in the inversion 
(by making X huge) or to  emphasize goodness-of-fit 
(by setting X to  zero). Such an ability to trade-off 
stability for goodness-of-fit is discussed in Numerical 
Recipes [24] in detail. With this modification of the 
x 2 ,  the imaged source is 

S = A2S. ( K T .  (A2R)-l . Robs + ACT . C) (1.25) 

and the covariance matrix of source now is 

A2S = ( K T .  (A2’??,)-’ . K + ACT .e)-’. (1.26) 

This technique may be justified using Bayes Theorem 
as explained in Refs [3, 251. 

As an alternative to this approach, constraints 
may be implemented exactly using the Householder 
Reduction of a matrix composed of the constraints 
and the inversion kernel together. Such a scheme is 
explained in more detail in Numerical Recipes [24] 
as well as in CERNLIB’s documentation for the TL 
package, no. E230 [22]. 

Inequality constraints may also be used to sta- 
bilize the inversion. Unfortunately, implementing 
them in the code requires the use of so-call “Active 
set” methods, which are beyond our current ability. 
Nonetheless, we do check to see how well inequality 
constraints are obeyed by the images. 
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Chapter 2 

GETTING STARTED 

2.1 Obtaining the Source Code A text editor 

To obtain the source codes for these programs, you 
can contact either one of the authors, Dave Brown 
(at brownl70@llnl.gov) or Pawel Danielewicz versions seem to work). 
(at danielewicz@nscl.msu.edu), or download 
the codes from LLNL’s Theory and Modeling a FORTRAN compiler 
Group web-page at  http: //www-phys . llnl . edu/ 
Organization/NDivision/ntm/HBTprogs.html. 
The codes are distributed as a Unix tarball A c++ if You want to use 
(HBTprogs .tar. gz) or a zipfile (HBTprogs. zip). 

CERNLIB libraries (the 1997a, 1999, and 2000 

mtx2xpm. cpp or the CRAB add-on programs 

2.2 System Requirements e CRAB, for the CRAB add-on programs 

We have test the codes on several different systems: 

e RedHat Linux 7.1 using g77 v0.5.26 from Gnu 2.3 Installation 
Compiler Collection, gcc v2.96-85. 

Compaq Tru64 using f90 and f77, the Compaq The installation is fairly simple under Unix: 
Fortran Compiler V5.4A-1472-46B2F. 

It probably works on many other systems, so if you ’. Set the environment CERNLIB to 
get it to  work on another system, please let us know the path to the CERNLIB library files 
and we’ll add it t o  this list. 

need several other things: 

libpacklib. a and libmathlib. a 
In addition to the Fortran compiler, you will also 

tar and gzip to unpack the tarball 

l3w and/or a postscript viewer to  read the 

2. Unpack the tarball: 

% gzip -d HBTprogs-v1.O.tar.gz 
manual. % tar xvf HBTprogs-vl.0.tar 

e make to  build the programs 

e sh t o  run the shell scripts 

GNU autotools for some of the build features in 
the configure script (autoconf version 2.52f 
and automake version 1.5 were used to  build 
this script). 

3. Go to the HBTprogs-vl . 0 directory 

% cd HBTprogs-vl.0 
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4. Run the configure script: 

% ./configure 
loading cache ./config.cache 
checking for a BSD compatible install ... (cached) /usr/bin/install -c 
checking whether build environment is sane... yes 
checking whether make sets ${MAKE) . . .  (cached) yes 
checking for working aclocal . . .  found 
checking for working autoconf ... found 
checking for working automake . . .  found 

creating src/Makef ile 
creating src/kernel-generators/Makefile 
creating src/ld/Makef ile 
creating doc/Makefile 

. . .  

5 .  Help may be obtained by typing “configure -help” 

6 .  Make the manual, library, etc. 

% make install-data 
Making install-data in lib 
makeC11: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/lib’ 
make[l] : Nothing to be done for ‘install-data’ . 
makeC11: Leaving directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/lib’ 
Making install-data in src 
makeC11: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vl.O/src’ 
Making install-data in kernel-generators 
rnakeL21: Entering directory ‘/home/dbrown/Projects/Interferometry/HBTprogs-vi.O/src/J 
/bin/sh ../../config/mkinstalldirs ../../kernels 
/usr/bin/install -c  genmaNIlD ../../kernels/genmaNIlD 
/usr/bin/install -c genmaPPlD ../../kernels/genmaPPlD 
/usr/bin/install -c genmaIMFlD ../../kernels/genmaIMFlD 
/usr/bin/install -c genmaKKlD ../../kernels/genmaKKlD 
/usr/bin/install -c genmaPIlD ../../kernels/genmaPIlD 

. . .  

That’s it! 
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Chapter 3 

AN EXAMPLE RUN 

In this section, we describe how to run the codes. 
Since it is easiest to  image if you use the imageit 
script, we will concentrate on using it. We begin by 
performing the example imaging calculation in the 
the doc/example/ directory and a detailed descrip- 
tion of the imageit script is contained in Chap. 5. 

This example is a simple one in that we will 
start with the proton correlation contained in 
example-pp. corin, corresponding to  the Gaussian 
source function in example-pp. souin. This Gaus- 
sian has X = 1 and R = 5 fm. 

6 .  

1. If you already have not done so, move to the 
doc/example/ subdirectory. 

2. Copy the imageit script from the sbin/ direc- 
tory and change its permissions so that it is 
executable. 

3. We need to figure out how many points 
to use the reconstruction, so view the 
example-pp. corin file and count the number 
of bins where C(q)  # 1. In this example, there 
should be 15 bins. 

4. Now edit example-pp. dimensions. First, 
change Ndata (this value is ND in the equations 
in the text) to  correspond to the total number 
of data points in example-pp. corin. Second, 
change Nmodel to  be some number smaller than 
the number of bins you found in the previous 
step (Nmodel is N M ,  the number of source co- 
efficients in the text). Nmodel= 8 bins should 
work . 

5. Edit example-pp . bsplines and set the 
order of the b-splines, BSplineDegree. 
BSplineDegree= 3 should work. 

For the last bit or preparation, edit the 
example. controls. We have several things to 
edit here. As you can see from the file, the 
controls are separated into a set of six differ- 
ent FORTRAN namelists. We will divide our 
explanation into these six parts. 

(a) The dataformat namelist: these controls 
describe the format of example-pp. corin. 
Since there are only three columns in 
the file, set xydxdy=.false. and set 

iince the data is already in GeV/c, set 
energyfactor=l .do. 

(b) The knot-controls namelist: these con- 
trols effect how the knots are chosen and 
displayed. They are described in detail 
later. For now, set showlmots= . false., 
save_knots=. true., and knotmode=l. 

(c) The f it-controls namelist: these 
control the various fitting controls. 
For simplicity, set all constraints to 
.false., turning them off. Set the 
fit limits to be lowfit-lim=O.dO and 
u p f  it_lim=45. do. Since we have turned 
off all constraints, the tradeoff parame- 
ter is irrelevant. 

(d) The norm-constr aint -controls 
namelist: these controls are for the nor- 
malization constraint. Since we turned it 
off, this section does nothing. 

(e) The display-controls namelist: these 
controls determine what is information is 
outputted from the inversion. The image 
file, coefficient file and covariance matrix 
file are always created, so for simplicity 
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Figure 3.1: Results of the example calculation. The input model correlation and source are shown in black 
and the restored source and correlation are shown in red. The restored source is represented as an error 
band. The two lower panels show the source on both a linear and log scale. 

set all the options to . f a l s e . .  You may 
set up-int-lim to any positive number less 
than u p f i t - l i m .  The code will integrate 
the imaged source up to that value. 

(f) The special-3Dxontrols namelist: 
these controls are specifically for the 3d 
inversion code that is still in development. 

Invoke 7. Now we are ready to run the code. 
image it : 

1 . / imageit  example pp s c r a t c h  

Here, s c ra t ch  is a directory for the codes to 
use to  store temporary files. 

8. That's it! 

In the doc/example/ directory, you should 
find several new files. The most important ones 
are the files example-pp . coef f s, which contains 
the coefficients of the b-spline expansion of the 
source, example-pp. covmtx, which contains the co- 
variance matrix of the imaged coefficients, and 
example-pp. k n o t l i s t ,  which contains the knots 
characterizing the b-spline expansion. Unfortu- 
nately, none of these files gives you a simple view 
of the source. For that, you should plot the 
exampleqp. imag which is the source tabulated as 
S(T)  vs. T .  These results are plotted in Fig. 3.1. 
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Chapter 4 

PREPARING INPUT FILES 

This chapter details the various input files needed for 
the codes. We begin with a discussion of the file- 
naming conventions. Next, we explain the format for 
the correlation data. Following this, we describe the 
FORTRAN include files that specify the array sizes. 
Finally, we list and explain all of the options in the 
main control file. 

4.1 Filename conventions 
There are many input files for the imaging codes, and 
there are even more output files. This is a reflection 
of our use of FORTRAN as well as our programming 
ability. Ideally we would like all inputs to be in one 
big file, with clean syntax. Since the user must be 
able to  change array sizes and FORTRAN lacks dy- 
namic memory allocation, every time the one big file 
is changed, the user would need to recompile the code. 
Since other information can be loaded after compila- 
tion, we instead use a few different files. 

The file names for these files are hard-coded into 
the codes. Since the management of these files can 
be somewhat complicated, we wrote a few scripts to 
rename the files to/from these hard-coded names to 

the input format that the codes can use and here we 
will quickly outline them. You may use either 3 or 
4 columns to  input the correlation (controlled by the 
xydxdy flag in yourf ile . controls file. Additionally, 
you have nearly complete control over the input units 
for the relative momentum. In all cases, we assume 
that the center of the i th bin is qi and the width of 
i th the bin is Aqi (so that the ith bin extends from 
qi - Aqi/2 to  qi + Aqi/2). 

4.2.1 3 Column Format 
The 3 column format contains, oddly enough, 3 
columns of real numbers. The first column is the q 
of the bin, the second column is the correlation func- 
tion itself, and the final column is the error on the 
correlation function. If you use this format, the code 
will assume that all of the Aqi’s are equal. 

As an example, the sample yourf ile. corin file 
look like: 

4.000 0.3413868 4.1696317E-02 
6.000 0.5828804 3.9426915E-02 
8.000 0.7180706 3.0471841E-02 

. . .  

The Fortran statement that reads this file is more reasonable names. The scheme we chose is sim- 
ple: all files in a run have the same prefix and differ- 
ent extensions, e.g. yourf ile.extension. A listing 
of all of the extensions is shown in Table 4.1 The map- 
ping of user filenames to  working filenames is shown 
in Table 4.2. There is a similar naming convention 
for the makcolD code and this is discussed in Chap. 7. 

READ(~O,*)Q(ISQ) ,C(ISQ) ,dC(ISQ) 

Note that the momentum here is specified in units of 
MeV/c, although nearly any units are acceptable. 

w e   ommen mend that YOU use this option if Your 
bins all have the same width. 

4.2 Correlation data file format 4.2.2 Column Format 

The correlation function data should be placed in the 
file yourf ile. corin. There are a few variations on 

The 4 column format adds a column corresponding 
to dq = Aq/2, the error on the momentum (in other 
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extension 
. bsplines 
.controls 
. corin 

.dimensions 
.knots* 

file description 
FORTRAN include file that specifies the order of the b-spline expansion. 
Main control file. 
Correlation data. 
FORTRAN include file that specifies various array sizes. 
List of knots (needed if knotmode=4). 

. comtx 
. imag 

. knot log 
. knots 
. optres 
.restored 

extension 
. coef f s 

Covariance matrix of the source coefficients. 
A table of S(T)  vs. T suitable for plotting. 
Log file from the knot determination (if knotmode=3). 
List of knots used for the b-splines. 
Resolution matrix. This is not explained in the text. 
The inverted-then-uninverted correlation for use as a cross check. 

file description 
Final coefficients of the source after fitting. 

L 
*used only for knotmode=4, see section 5.1 for more detail on choosing the knots 

Table 4.1: List of the file extensions used by the imageit script. 

starting name 
yourfile.corin 

yourfile.dimensions 
yourfile.bsplines 
yourfile.controls 
yourfile.knots 

working name 
corinput.dat 

dimensions1D.inc 
bsplines1D.inc 
main.controls 
knotlist. dat 

OutDut Files 

source-imag.dat 
source-coeffs.dat 
source-covmtx.dat 

knot li st . dat 
makeknots.log 
c2model. dat 
optresmtx .dat 

I working name I ending name I 
yourf ile . imag 
yourfile.coeffs 
yourfile.covmtx 
yourfile.knots 
yourfi1e.knotlog 
yourf ile .restored 
yourfile.optres 

Table 4.2: Mapping of starting filenames to  working filenames and back to  ending filenames. 
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words, the $-width of each bin). This column is 
added before the error on the correlation column. 
The above sample file would then be: 

choose how many equality constraints you think you 
might use and call that Nusedcons. With these, a 
starting guess for Nmodel is: 

4.000 0.3413868 2.000 4.1696317E-02 
6.000 0.5828804 2.000 3.9426915E-02 

Nmodel M Ninterestingf Nusedcons (4.1) 

8.000 o*7180706 2*ooo 3*0471841E-02 Chapter 5 and Ref. [3] discuss other ways of setting 
this variable. The last variable Neqcon sets the max- 
imum number of constraints in the code. This should 
not be changed unless you plan on adding more equal- 

. . .  
The Fortran statement that reads this file is 

READ(30 2 *> 4 ( IS4) ,C (ISQ) ,dQ (IS41 ,dC(IS4) ity constraints. 

If your bins do not all have the same size, you 
must use this f o r m a t  to specify the bin widths. 

4.2.3 Units of relative momentum 
The q that is entered in the table may be in 
a n y  units and it may correspond to qinv = 
d-12 (bigQ=.false.) or Qinv = 
d- (bigQ=.true .). Whatever units you 
choose, you must specify how to convert your choice 
of units to  our choice of units in yourf ile. controls. 
How exactly you are to do this is specified in the 
section on the yourf ile. controls file, but basically 
you must specify the units conversion factor and say 
whether you will use qinv or Qinu. In any event, in- 
side the codes we work in GeV/c and our default q 
is qinv for both all particle pairs (including mesons 
where one traditionally uses Qinv). 

4.3 Editable include files 
Files yourf ile. bsplines and yourf ile .dimensions 
are files that  get included by makcolD and 
imagelD when they are compiled. Setting up 
yourf ile. bsplines is easy. Once you have chosen 
what order b-splines you want to use (0 for box- 
splines, 1 for hat functions, ...), simply change the 
line 

parameter (BSplineDegree=3) 

to  reflect that order. 

tle more thought. Here the line to edit is 
Setting up yourf ile .dimensions may take a lit- 

parameter (Ndata=83,Nmodel=6,Neqcon=5) 

First, set Ndata equal to the number of bins in your 
data file. Choosing Nmodel is a little more difficult. 
To get a rough guess, count up the number of data 
points in you correlation that look like they are dif- 
ferent from 1. Let’s call this Ninteresting. Now 

4.4 Main control file 
The main control file is yourf ile . controls, which 
consists of a series of FORTRAN namelists. Each 
namelist corresponds to a specific set of options and 
here we detail each namelist separately. 

The dataformat Namelist. This namelist 
contains the options that specify the for- 
mat of your input correlation function, 
yourf ile . corin. The options are: 

xydxdy: This sets whether the data file 
has either a four column format, 

.true.), or a three column for- 
mat, %. qi, c(qi), dC(qi) (xydxdy = 
. false . ) . 

e.g. Qi7 C(qi) ,dqi ,  dC(qi) (xydxdy = 

big@ This sets whether q corresponds to 
Qinv = J-/2 (big4 = 
. false . ) or to Qinv = J- (pl - pz)2  

(big4 = .true.). 

energyfactor: This tells the codes how to 
rescale the q’s in yourf ile. corin 
get rescaled to  bring them to units 
of GeV/c (the internal format of 
all of the codes). For exam- 
ple, if your data is in MeV, then 
energyfactor=ld.-3 

0 The knot-controls Namelist. These options 
tell the imaging code what t o  do with the knots. 

showknots: This tells imagelD to print the 

saveknots: This tells imagelD whether 
to save the knot list to  the file 
knotlist. dat. 

knot list to the screen. 
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knotmode: This option tells imagelD which 
method to use to  chose the knots. The 
options are descibed in detail in Sec- 
tion 5.1. 

T h e  f i t -controls  Namelist. These options 
control the actual imaging of the source. 

lowfi t - l im:  This option sets the lower bound 
of the region in T that you want to  re- 
construct the source over. 

u p f  i t - l i m :  This option sets the upper bound 
of the imaging region. 

t radeoff :  If tradeoff is positive, it is the 
trade-off parameter X in Eq. (1.24). 
It should be chosen so that the con- 
straint term in the modified x2 is 
larger than the data term. Accord- 
ing to  Ref. [3], a good choice is to  pick 
tradeof f >> (Ndata+Nmodel+l) x lo6 
If tradeoff is negative, this signals 
to  imagelD to use a Householder re- 
duction to  satisfy the constraints ex- 
actly. One should note however that 
it may not be possible to  both satisfy 
the constraints exactly and obtain a 
reasonable image. 

d i f f  -constraint:  This option tells imagelD 
whether to use the S’(r + 0) = 0 con- 
straint. 

norm-constraint: This option tells imagelD 
whether to  constrain the integral of 
the source. See below for more options 
for this constraint. (Note: this con- 
straint does not work as of 8/8/2000, 
DAB). 

z e r o s  our c e a t  -1 a r g e r  : This option tells 
imagelD whether to force S(T)  = 0 
when T =upf i t - l im.  

smoothsource-at-larger:  This option tells 
imagelD whether to  force S’(T) = 
0 when r = u p f i t l i m  -5 fm. 
This has the effect of smooth- 
ing the source at large distances. 
This option sometimes has no ef- 
fect when used in conjunction with 
z e r o s o u r c e a t - l a r g e i .  

T h e  norm-constraint-controls Namelist. 
This namelist contains more fine-grained con- 

trol over the normalization constraint. (Note: 
these options do not work as of 8/8/2000, DAB) 

norm: This sets what value you want the 
norm of the source constrained to. 
The default is norm = 1 .do. 

norm-intlim: This sets the upper limit of the 
integral used to determine the normal- 
ization of the source. 

The  display-controls Namelist. 

show-source: This option tells imagelD 
whether to write the imaged source 
out t o  the screen. It is always written 
to  the file source-imag.dat. 

show-coef f s: This option tells imagelD 
whether to write the source coeffi- 
cients t o  the screen. It is always writ- 
ten to  the file source-coef f s .  dat .  

show-corr: This option tells imagelD whether 
to  uninvert the source to obtain a 
correlation that may be compared to 
your input correlation. The results are 
written to the screen and to  the file 
c2model. dat  . 

up-intl im: imagelD always integrates the 
source and outputs the results. The 
upper limit of this integration is 
up-int -1 im.  

checkne-constraints:  This option tells 
imagelD whether to check if the im- 
aged source obeys the inequality con- 
straints and then outputs the results. 

showresmtx: This is an undocumented fea- 
ture. 

showkernel: This option tells imagelD 
whether to write the kernel it used 
to invert the correlation to  the screen. 

The  special-3D-controls Namelist. This 
namelist contains the set of options specific to 
the three dimensional inversion code which is 
currently in development. Thus, we do not dis- 
cuss it at this time. 

For more information on setting these files, see 
Chapter 5 on imaging or the FAQ (Chapter 8). 
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Chapter 5 

IMAGING THE SOURCE 

This chapter details how to use the imagelD code 
and the wrapper script imageit to invert correlation 
data. To invoke imageit, type 

$ . /imageit [prefix] [PID] [scratchdir]  

The [prefix] argument of imageit is the prefix of 
your correlation function. The [PID] argument is 
the particle type. Valid types are shown in Table 6.1. 
The [scratchdir]  argument is an optional directory 
to store the temporary files. 

While the imageit script simplifies the running of 
the imaging code, t o  use the code effectively you must 
understand the various options. Most are adequately 
explained in Chap. 4. Here we focus on choosing the 
knots, the use of equality constraints and checking 
whether inequality constraints are obeyed. 

5.1 Choosing the knots 
The knots are the matching points of the polynomi- 
als comprising the b-splines. Because the width of 
the b-splines set the resolution of the image, picking 
good knots is crucial. Unfortunately, choosing the 
knots is not always straightforward. In this section, 
we will explain how to choose the knots and explain 
the various things you may do to  influence the loca- 
tion of the knots. The most obvious way to set the 
knots is by picking a knotmode. Table 5.1 lists the 
various knotmode’s available to you. While Table 5.1 
may be enough information to  use the code, there are 
many subtle points that we must elaborate on in this 
section. 

The outline of this section is as follows. First, 
we discuss some general issues with our knot choices. 
Second, we detail the special case of box-splines, 
where the knots are actually the edges of the bins 

of the histogram that the box-splines represent. Fi- 
nally, we detail the individual knot modes that you 
may choose from. If you would like more detail on 
the topic of choosing the knots, you should probably 
read Refs. [3, 211. 

5.1.1 General comments about knots 

In this subsection, we briefly describe how we deter- 
mine the number of knots in an expansion and how 
we fix the first and last few knots. 

The knots form an ordered list, {t i} ,  of NK 
values on the interval [ lowfi t - l im,  u p f  i t - l i m ] :  
l o w f i t - l i m  5 tl 5 t 2  5 ... 5 t N K  5 up-fit-lim. 
The number of knots is N x  = N M  + NB + 1, where 
NM is the number of source coefficients (Nmodel in 
the code) and N B  is the degree of the spline repre- 
sentation (BSplineDegree in the code). 

Since we do not know the behavior of the source 
at large T and we truncate the source long before it 
completely goes to 0, we do not make any continu- 
ity assumptions at  u p f i t - l i m .  We do know that 
the source should go to a maximum at T = 0 fm, 
however the peak at  the origin may be too sharp to  
resolve. Thus, we can not always make continuity as- 
sumptions here either. In the end, we must leave the 
control of the continuity of the source at the edges of 
the fit region to  the user. In order to remove any as- 
sumptions about the degree of continuity at the edges 
of the fit interval, we fix both the first and last NB + 1 
knots at their respective fit interval edge. 

5.1.2 Box-splines 

In this subsection, we describe the special case 
of the box-spline. This is the case where the 
BSplineDegree=O and is more commonly called box- 
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knotmode 
1 

2 

makeknots2 I 3 l  

routine used description notes 
CERNLIB’s DSPKNl fixed spaced knots 

CERNLIB,s D S P I N ~  

set knots to collocation points 
for Schoenberg’s variation dimin- 
ishing approximation 

this option overrides u p f  i t - l i m  

this option requires C E R W  S 

“optimal knots” 

4 

minuit, so may not function on 
some linux machines 

n l a  user SuDDlied reauires k n o t l i s t .  dat 

Table 5.1: Various settings for knotmode. All of the CERNLIB routines are detailed in the CERNLIB 
documentation [22]. 

splines. This case must be describe separately as it 
has several properties that you must be aware of when 
using them. We define box-splines here and comment 
on their continuity properties. 

For a given list of knots {t i} ,  the i th  box-spline is 

B~(.) = e(. - ti) - e(T - ti+l) .  (5.1) 
Thus, the knots that define the b-splines in this case 
are just the edges of the bins of the box-splines. Ex- 
panding a function in terms of box-splines results in 
a histogramed representation of the function. Some 
box-splines are pictured in Fig. 1.2(c). 

A function expanded in the box-spline basis 
clearly has discontinuities a t  all bin boundaries. Thus 
when we use this basis to represent the source, we are 
making no assumptions about the degree of continu- 
ity of the source. In fact, setting BSplineDegree=O 
deactivates all constraints on the source that deal 
with its continuity. 

5.1.3 Specific knotmode’s 

We now detail the various knotmode’s. For 
most practical purposes, the equally spaced knots 
(knotmode=l) should be good enough, however we 
provide other options for more control over the knot 
placement. 

Equally spaced knots 

This is the simplest knot choice and the best option 
for following the Fourier theory recommendations in 
Sect. 1.2.3. In practice, we have found this option to 
be a good default choice. Under this option, the first 
and last BSplineDegree+l knots are fixed at the fit 
region limits. The remainder of the knots are equally 
spaced between these end knots. 

Schoenberg’s Variation Diminishing Spline 
knots 

Schoenberg’s Variation Diminishing Spline Approx- 
imation is a scheme for approximating a function 
using b-splines. The goal of the approximation is 
to  minimize the difference between the b-spline ap- 
proximation and the true function in a least-square 
sense [21, 221. In order to  make the approximation 
work, special knots must be chosen. We do not use 
this approximation, but we were interested in exper- 
imenting with the knot choice used in this approxi- 
mation. 

In this approximation, the knots are built off a 
list of control points, {xi}, via 

The control points are chosen such that the first and 
last control points are set to the end of the fit region 
and the rest of the control points are equally spaced 
between them. Unfortunately, Eq. 5.2 is not uniquely 
invertible. Ref [21] offers a prescription that is used in 
CERNLIB. This prescription is basically an iterative 
method that results in knots {t i}  that approximately 
satisfy Eq. (5.2). 

Optimal knots 

This option is already adequately explained in 
Sect. 1.2.5. 
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Do-it Yourself Knots 

This option is somewhat of a last resort for when 
no other knotmode seems to work. To use this, it 
is probably best to  start with a yourf i l e  .knots  file 
generated using one of the other options. To generate 
a valid (although not necessarily good) knot list, you 
must do the following: 

There should be Nmodel+BSplineDegree+l 
knots. 

0 The first BSplineDegree+l knots should 
be fixed to l o w f i t - l i m  and the last 
BSplineDegree+l knots should be fixed to 
u p f  i t l i m .  

0 The knots must be monotonically increasing. 

While we use this option rarely, we have found cases 
where noticeable improvements in the final x2 may 
be found by moving the knots just a little bit. 

5.2 Equality Constraints 
As we have explained earlier, an equality constraint 
is a condition on the source that can be written 
C . S = c .  There are several constraints that we 
find useful and they are summarized in Table 5.2. 
They each arise from known physics of the two parti- 
cle source, and they each serve a mathematical pur- 
pose. In Table 5.3, we also list the equations of the 
constraints and their b-spline representation. 

The degree to  which the constraints are obeyed 
is set by the t radeoff  parameter. This parame- 
ter is the X parameter mentioned in Eq. (1.24). If 
tradeof f < 0, this signals the code to  use the House- 
holder reduction to  exactly obey the equality con- 
straint. This is often a good choice, but it may hap- 
pen that your source (or your representation of the 
source) is incompatible with the constraints. This 
sometimes happens with very narrow sources when 
using the d i f  f -cons t ra in t  option. If tradeof f > 0, 

this signals the code to  function as described in 
(1.25). The limit where t radeoff  = X + 00 exactly 
reduces to the Householder reduction case. 

As a final comment to using equality constraints, 
we mention that you should consider increasing the 
number of source coefficients so as to  avoid overcon- 
straining the system and producing garbage. The 
rule of thumb we have found has been stated already 
in Eq. (4.1). 

5.3 Inequality Constraints 
As we have mentioned earlier, an inequality con- 
straint is a constraint on the source of the form 
C . S 2 c .  We have not implemented inequality con- 
straints in the inversion. However, we do check to see 
if any are violated. 

We check the following inequality constraints for 
compliance: 

p o s i t i v i t y :  Since the source is a convolution of two 
quantum mechanical Wigner functions, it is 
possible that it could go < 0. However, clas- 
sically, the phase space density is positive 
definite, so the source must also be 5 0. In 
our experience, a negative source indicates 
a problem with the imaging. 

FT t e s t :  If the independent source hypothesis is cor- 
rect, then according to  Ref. [16] the Fourier 
transform of the source must be positive de- 
finate. Sources that fail this test also tend 
to have problems with the imaging. 

normalization: Conservation of probability implies 
that the integral of the source over all T 

should yield 1. However, if one truncates 
the integral at say u p f i t - l i m ,  then the in- 
tegral should be < 1. This can help diagnose 
wild fluctuations in the imaged source. 

A list of these inequality constraints, along with their 
b-spline representations, are in 5.4. 
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constraint 
diff-constraint  

norm-constraint 

zero-sourcea t - la rge1  

smoo thsourcea t - l a rge r  

purpose 
To constrain the higher l? components that 
are not well controlled due to  the effect of 
the centrifugal barrier in the Schrodinger 
equation on the pair wavefunction. 
To smooth fluctuations at large T ,  which 
dominate the normalization integral. 
To smooth oscillations in the source at  
high r'caused by aliasing of statistical and 
experimental noise in correlation. 
Same as ze ro - sourcea t - l a rge i .  

justification 
S(r) is convolution of two well 
behaved single particle emission 
rates so T = 0 fm is a maximum. 

Conservation of probability forces 
source to be normalized to 1. 
No pairs are created farther than 
Irl = T,,, apart in the model. 

S(r) should go to 0 smoothly as 

Table 5.2: Explanation of the various equality constraints. 

FT test 

normalization 

constraint 

j=l 
N M  

4 x 1  d r r 2 -  S(T)  2 0 c 4 7 r S j  B j ( 4  2 0 
O0 sin(2qr) 

2qr j=1 

4n Lrn dr  r2S(r)  5 1 47rSj Lm dr ~ ~ B j ( r )  5 1 

d i f f  -constraint  

norm-constraint 

zero-source-at-large1 

smoothsource-at-larger 

as 
ar 
- ( r  + 0) = 0 

continuous representation I b-spline representation 
I N M  

03 

47r 1 dr r2S(r )  = X 

Table 5.3: Equality constraints on the b-spline representation of spherically symmetric sources. 

I constraint I continuous representation I b-spline representation 
I I 

Table 5.4: Inequality constraints on the b-spline representation of spherically symmetric sources. 
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Chapter 6 

BUILDING KERNELS 

This section focuses on building the kernels and how 
to construct your own kernels. In general, making 
a kernel file is simple using the pick-kernel shell 
script: 

% . /pick-kernel [PIDl [link] 

Here, the [PID] option is actually the keyword to tell 
pick-kernel which kernel to build. A table showing 
the valid kernel keywords is shown in Table 6.1. The 
[link] option tells pick-kernel where you would 
like to symlink the created kernel. 

The pick-kernel script is used by the two con- 
trol scripts (imageit and createtest) to choose the 
kernel. Since pick-kernel simply manages the pro- 
duction of the kernels, the actual work is done by the 
various genma* 1D codes. While using pick-kernel 
and the underlying kernel generators is simple, one 

1. Map keyword [PID] to kernel generator and 
output data file. See Table 6.1. 

2. Go to  kernels/ directory in source tree. 

3. See if the requested kernel is already done. If 
so, skip step 4. 

4. Build the kernel and save it as genma* . dat. 
5. Make a symbolic link in from kernel 

in kernels/ to the final destination, 
[link] /kernel. dat. 

6.2 Layout of kernel.dat and 
genmaNIlD 

should still know how they work, both to  understand 

to understand how to write One’’ Own 

pairs we had not considered. 

pick-kernel. Second, taking the non-interacting bo- 

This section is a explains how the kernel. dat files 

‘Ode for kernels or, perhaps, create your own kernel generator. 
For non-interacting bosons, the final state relative 

the pitfalls and limitations Of each type Of pair, and are layed so that you can troubleshoot existing 

We now outline this section. First, we detail the wavefunction is simply a symmetrized plane wave: 

iq.r/fic + e--iq.r/fic son kernel as an example, we explain the layout of the 
kernel files. This should help you create your own ker- 
nel. Next, we explain the proton-proton, IMF and 
meson kernels. Finally, we explain how the kernels resulting in a rather trivial kernel: K(q,r) = 
are loaded and used in imagelD. cos(2q.r/fic). It is easy to show that the angle av- 

eraged kernel is therefore: 

sin p 

P 
where p = 2qr/Fcc. (6.2) 

Note, the kernel has no units. The simple FOR- 
TRAN code that writes this kernel to  genmaNIlD . dat 
is listed in Fig. 6.1. 

Although one may read the file format off this 
FORTRAN code, it does not hurt to  repeat it here. 

6.1 The pick-kernel script 
Ko(4,r) = - 

If you ever make a new kernel, you should consider 
modifying the pick-kernel script to  automate the 
use of you kernel. So, to aid in this, we now explain 
briefely how the script works. You should also exam- 
ine the source itself though. 

Here is an outline of the script: 
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C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

program genmaNIlD 
implicit none 
include ’constants.inc’ !fund. consts. (hbar, pi, etc . . .  ) 
include ’particle.inc’ !particle masses & charges 
include ’gridinfo1D.inc’ !define r & q grid here 
real*8 Kmatrix(nsr) 
real*8 r,qrel, rho 
integer isq,isr 

open kernel file and create header 

write(*,*) ’Writing kernel to disk’ 
open(20,file=~genmaNI1D.dat~,status=~unknown~) 
write(20,*) ’Generated by genmaNI1D’ 
write(20,*) ’21*22= 0’ 
write(20,*) ’reduced-mass= 0’  
write(20,*) ’Nsq= ’,nsq 
write(20,*) ’Nsr= ’,nsr 
write(20,*) ’maximum-Lambda= 0 ’  
write(20,*) ’--begin-table--’ 
write(20,*) ’ Lambda= 0’ 

find & output complete K-matrix 

do isq=l,nsq !start big q loop 
qrel=dble(isq)*dsq+qmin 
write(*,’(IH+,I3)’)isq 
do isr=l,nsr !start r loop 

r=dble(isr)*dsr+rmin 
rho=2.dO*qrel*r/hc 
if (rho.lt.1.d-6) then 

else 

endif 

Kmatrix(isr)=l.dO-rho*rho/6.d0 

Kmatrix(isr)=sin(rho)/rho 

enddo !end r loop 
write (20, *) (Kmatrix (isr) , isr=l ,nsr) 

enddo !end big q loop 

output footer and close file 



IMF's IMF 

Table 6.1: The keyword to  particle pair mapping used by pick-kernel. 

Generated by genmaNIlD 
Zl*Z2= 0 
reduced-mass= 0 
Nsq= 1001 
Nsr= 201 
maximum-Lambda= 0 
-- begin-table-- 
Ko(q1,rd Ko(q1,r2) . . .  KO (qNsq, rl) 
Ko(qz,r1) Ko(q27r2) . . . KO(qNsq, r2) 

Figure 6.2: Layout of the kernel file produced by genmaNIlD. f. 

A schematic version of genmaNIlD . f is shown in Fig- 
ure 6.2. 

The grid itself is specified in gridinf olD . inc and 
here are the equations for the grid points: 

(6.3) qisq 
risr 

= dble(isq) * dsq + qmin, 
= dble( isr) * dsr + rmin. 

6.3 The rest of the kernels 
In this section, we detail the rest of the kernels, com- 
menting on some of the trickier aspects of the codes. 

The radial wavefunctions g$ ( T )  are solutions of 
the Schrodinger equation, including the Coulomb and 
nuclear potentials (in this case, the REID93 soft-core 
potential [26]). The integration of the wavefunction 
is done with a simple leap-frog algorithm, starting 
at very low T (<< 1 fm) out to  absurdly large T 

(z 200 fm). At this large T ,  we read off the final 
normalization and phase of the radial wavefunctions 
and then renormalize the wavefunctions. We do this 
to repair any imperfect guessing of initial value of the 
wavefunction or its derivative near the origin. We use 
all P s  in the sum below lmaz = qmazrmaz/hc. 

6.3.1 genmaPPlD, for proton pairs 6.3.2 genmaIMFlD, for Intermediate 
The proton kernel is given by the following sum over 
partial waves: 

Mass Fragments 
In the case of Intermediate Mass Fragment correla- 
tions, the kernel we use is' 1 

Ko(q,r) = 2 c(2j + 1) (g i$ ( r ) )2  - 1. (6.4) 

The sums over spin s, total angular momentum j and 
orbital angular momenta e and b' basically amount 

Ko(q, T )  = O(r - T, )  (1 - rc /~)1 '2  - 1. (6.5) 
j s e e f  

Here, the reduced velocity is 

t o  an overall factor of for the singlet channel and a V 
(6.6) (21 + 22)'/2 ' factor of 2 for the triplet channel. vred = 

'Under the assumptions that the pair Coulomb correlation dominates the fragment correlation and that the fragments were 
approximately isospin symmetric. 
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and the distance of closest approach in (6.5) for sym- 
metric fragments is approximately 

This is determined by the makefiles that build the 
genmaPIlD and genmaKKlD executables. 

e2 
. (6-7) 6.4 Using the kernels M- 

2 2 1  22 (AI + A2) e2 
T c  = 

A1 A2 m N  u2 m N u k  

To get this kernel to  function properly, it may 
be necessary to play with the units of q in 
yourf ile. controls. 

6.3.3 genma-meson, for meson pairs 
All like-meson kernels can be generated by the 
genmameson code, provided that we may neglect the 
nuclear force between the meson pair. For T and K 
mesons, this seems to be a reasonable approximation. 
Given this, the kernel for like mesons is 

00 

Ko(q, T) = (2 + l)-1Jge(T)12 - 1 .  (6.8) 
e=o, e ="en 

Here, ge(T) is the radial wavefunction that we obtain 
by solving the Klein-Gordon equation, including the 
Coulomb force. The Coulomb force is included using 
the minimal substitution prescription, so includes the 
relativistic correction to the Coulomb force. 

The genmameson code itself does not know about 
the mass or charge of the mesons in question. 

Because it may be useful change the representation 
of the source in imagelD, we decided that it is better 
if the genma*lD codes simply concentrate on build- 
ing kernels, Ko(q,r). In order to  keep the details of 
the kernel separate from the imaging code, we have 
provided a function called K f  t n  (1, q, r) to serve as 
the generic program interface to the kernels. When 
called, K-f tn (1, q, r) first decides how to evaluate 
and return the value of Ke(q, T). If there is no kernel 
on the disk, it uses its own copy of the non-interacting 
boson kernel (also provided by genmaNIlD. f). On the 
other hand, if there is a kernel on the disk it calls the 
routine rawKspline. Currently this function resides 
in the rawKspline . f file. 

All of the kernel generators produce a table of 
kernel values on the same grid in T and q defined 
by Eq. (6.3) and specified in gridinfolD. inc. To 
make use of this table, we have created a routine 
called rawKspline which creates a 6th polynomial 
interpolated approximation to the kernel saved on 
disk. The rawKspline routine is also contained in 
rawKspline. f. 

'For the one dimensional problem here, f = 1 = 0. 
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Chapter 7 

MAKING TEST CORRELATIONS 

In this chapter, we discuss two methods for gener- c r e a t e t e s t  in order t o  simplify the process of run- 
ating correlations for testing the imaging code and ning makcolD. The input files and the required exten- 
kernels. The first code, makcolD, convolutes one of sions are listed in Table 7.1. 
a variety Of  Sample source functions with a kernel. To run makcolD using c r e a t e t e s t ,  invoke it in 
In other words, makcolD performs the integration in 
Eq. ( l . l l ) ,  which we repeat here: 

the same manner invoke imageit: 

00 

R(q) = 47r 1 drr2Ko(q, r )S ( r ) .  (7.1) 

The other code is an extension of Scott Pratt’s CRAB 
code [6] that we call sourcemaker. CRAB uses the 
single particle sources that comprise S(T)  to  construct 
the correlation directly via: 

R(q) = 1 d47- KO(% 7.) x 

1 d3R D ( R  + r/2, P/2)D(R - r/2,  P/2) .  

( 7 4  
To obtain the source, sourcemaker must then re-do 
the integrals in Eqs. (1.5) and (1.6), which we com- 
bine here: 

S(r’) = drb d4R D(R + r /2 ,P/2)D(R - r / 2 , P / 2 )  

We will first explain how to invoke makcolD us- 
ing the createtest script. Following this, we will 
explain some of how makcolD works, in the event 
that you wish to  extend it. Finally, we give a brief 
overview of sourcemaker and the other codes in the 
CRAB-addons directory that are needed to use CRAB 
and HBTprogs together. 

(7-3) 
J 

7.1 Running makcolD 
As with the other codes, makcolD requires spe- 
cific input filenames, so we have provided a script 

% . / c r e a t e t e s t  [pref i x l  [PIDl [scratchdir]  

The script c r e a t e t e s t  works in much the same way 
that imageit works. First, it copies all the relevant 
files to a scatch directory with names changed accord- 
ing to Table 7.2. It then invokes makcolD. Finally, 
the script copies all of the resulting files back to  the 
starting directory with the new names as listed in 
Table 7.2. 

Table 7.3 is a listing of all of the sources that 
makco can use to  generate correlation functions. In 
all cases, the sources are all normalized to  a parame- 
ter called A. 

7.2 How makcolD works 

The program makcolD is very simple. It simply per- 
forms the convolution in Eq. (1.11) using a user spec- 
ified source and the kernel chosen by pick-kernel 
and invoked through K-ftn. The convolve routine 
averages the correlation over the qi bins in the input 
data file yourf i l e .  cor in .  The r i n t e g r a l  routine 
performs the actual integral in Eq. (1.11). All inte- 
grals are done using the Romberg integration scheme 
(see [24]). For speed, the user specified source is 
placed in a table and a simple cubic spline interpo- 
lates this table of source values. After the correlation 
is generated, makcolD simulates statitical noise using 
the errors from the data in a correlation input file. 
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extension 
.controls 
. corin 

.dimensions 
. souin* 

OutDut file extensions 

file description 
Main control file. 
Correlation data. 
FORTRAN include file that specifies various array sizes. 
InDut source function for makcolD oDtion 100. 

extension 
. cormod 

. cormodnoerr 
. souin 

Table 7.1: List of the file extensions used by the createtest script. 

file description 
Generated test correlation, with errors and statistical noise. 
Generated test correlation, w/o errors and statistical noise. 
The model source generated by makcolD. 

Input Files 
starting name I working name 

yourfile.corin I corinput . dat 

Output Files 
working name I ending name 
souinput. dat I yourfile.souin 

Table 7.2: Mapping of starting filenames to working filenames and back to  ending filenames in the createtest 
script. 

yourfile.dimensions 
yourfile.controls 
yourfile.souin 

7.3 Adding to makcolD 

dimensions1D.inc testcorr . dat yourfile.cormod 
main.controls noerrcorr. dat yourf ile. cormodnerr 
souinput. dat 

Adding sources to makcolD is straightforward, pro- 
vided you watch for a few things: 

1. The source must be normalized to 1 (see 

2. The source has units of fmP3. 

3. Once you have included your source, add 
a menu entry in the Getchoice and 
Simplesource routines in makcolD. 

Alternatetively, you could be lazy and just use the 
“load source from disk” option from the makcolD 
menu. 

Eq. (1.7)). 

7.4 CRAB and friends 
As an alternative to makcolD . f , you might consider 
using Scott Pratt’s CRAB code [6]. This code takes 

the freeze-out points from a transport model and 
computes the pair correlation function. The data 
itself must be formatted according to  the OSCAR 
standard [29]. We have written sourcemaker to take 
the same OSCAR formatted set of freeze-out points 
and create a source function from them. This code 
uses the procedure outlined in Ref. [9]. 

In addition to  sourcemaker, we provide a few ad- 
ditional files in the CRAB-addons directory. First, 
CRAB provides a code called phasemaker to  gen- 
erate the freeze-out positions from a thermal Gaus- 
sian single particle source, D(r ,  p). We have extended 
this code to  generate single particle sources with ex- 
ponential halos. Second, in order to  help CRAB 
and HBTprogs coexist, we have provided a pre- 
configured driver and binning. Finally, CRAB’S out- 
put format differs from HBTprogs’s yourf ile . corin 
file format so we wrote a converter code called 
CRAB-converter.cpp. 
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1 Menu Item 

Gaussian 

Gaussian with 

Sharp Sphere 

Sqrt Thingee 

Gaussian w/ 
cutoff 

Hard Sphere 
Freeze-out 
Density 

Shell Freeze-out 
Density 

I Exponential 

Woods-Saxon 

Delta Function 

Dipole 

Sum of Any Two 
Shapes 

Load from disk 

Eauation of Source Function 

1 15 r 
2 47r5Rf exp ( ~ / R I )  - 1 

exp(-r2/4Ri) + -- 1 1  
(5 ( 2 J ; ; R o )  

1 Ro 
2.rrRi r 

X-B(Ro - T ) -  

1 
47i Rz 

X-6(r - Ro) 

2 Ro 
7r2 ( r2  + 4Ri)2 

x- 

Notes 

C is a normalization 
constant determined by 
the program 

C is a normalization 
constant determined by 
the program 

T h l S  corresponds 
to a freeze-out 
phase-space density 
f ( r , p )  0; S(r - RoP) 

T h l S  corresponds 
to  a freeze-out 
phase-space density 
f(T,P) S(r - RoP) 

c' is a normalization 
constant determined by 
the program 

T h e  user chooses which 
shapes. 

Needs souinput.  d a t  file 
and code overwrites it 
on exit. 

Table 7.3: List of sources used by makco. 
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Chapter 8 

FREQUENTLY ASKED QUESTIONS (FA&) 

1. What happens if my correlation doesn’t 
go to 1 at large q? You most likely will end 
up with a source that is meaningless, namely 
it oscillates wildly and is mostly negative (that 
is, if it didn’t crash imagelD already). Unfor- 
tunately, there are many reasons why your cor- 
relation might not get to 1 at large q.  The triv- 
ial one, namely that the correlation is normal- 
ized wrong, should be fixed before attempting to 
image. However, various kinds of flow-induced 
position-momentum correlations are known to 
result in correlations that do not go to  1 [27]. 
This type of problem seems to  be very common 
in low energy proton-proton correlations. 

2. My restored correlation or my model cor- 
relation oscillates! This is most likely either 
due to  a bugfmisuse of the codes, but may also 
be due to there being an edge in the source. See 
[16] for some detail on this. 

3. I’m using BSplineDegree=O and my 2nd 
bin is really low! This can usually be fixed by 
increasing BSplineDegree. This has the effect 
of tying the first few bins together in a bigger 
spline. You won’t loose resolution, but you will 
squash many unphysical oscillations. As a side 
benefit to going to higher degree Basis splines, 
you will be able to use various equality con- 
straints to stablise the image at low r. 

4. My source tail oscillates wildly! You 
may either have some tweaking to do or you 
don’t have the resolution to  resolve the source 
at  large r.  The constraints that control the 
large T behavior (zero-source-a t la rger  and 
smoothsource-at-largei)  may help or you 

may be forced to  decrease the size of your imag- 
ing region. 

5. My source has a cusp at large r! This is 
most likely an artifact of aliasing caused by the 
statistical noise in the correlation. You can ei- 
ther choose to ignore it or squash it with the 
two constraints that control the large T behav- 
ior of the source (zero-source-at-larger and 
smooth-sourceat - l a r g e r ) .  

6. My source has a cusp at low r! You can 
fix this easily by adding the d i f f -cons t ra in t  
constraint. Of course, one must be careful1 be- 
cause you may indeed have sharp structure in 
your source and may not be able to resolve it 
once the constraint is turned on. 

7. My head has a cusp! Sorry, I can’t help you 
there. 

8. Can I have variable sized bins in my data? 
Yes, reread section 4.2. 

9. How can I get the integral of the 
source? It is already automatically computed 
by imagelD. You can control the upper limit of 
integration with the option up-int-lim in your 
main controls file. 

10. What are some of the issues with CERN- 
LIB? When the project was started, using 
CERNLIB made a lot of sense: it was free, 
easy to  use, and had most of the functions we 
needed for the code. In particular, it has the 
NORBAS Basis spline package and minuit. Un- 
fortunately, over time, CERNLIB went from 
useful package to  crutch: 
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(a) minuit is flaky on linux. Even on the 
Compaq alpha’s minuit has been known 
to freeze when searching for optimal knots. 
Incidentally, when this happens, changing 
up-fit-lim a little bit usually fixes the 
problem. 

(b) overuse and misuse of common block cause 
trouble when parallelizing the code 

(c) archaic and often obsolete FORTRAN 

(d) CERN is no longer supporting it 

We are working to remove all need to  link to this 
code by replicating CERNLIB functionality in 
the l i bp lay .  a library in the l i b /  directory. 

11. How can I pick good knots? Read the sec- 
tion 5.1, or better yet, read Refs. [3, 211. 

12. Why don’t my Gaussian fit and my 
source look the same? There are many rea- 
sons, but the obvious one is that your source 
isn’t Gaussian! Of course, if you are using 
makcolD and you pu t  in a Gaussian, then most 
likely there is either an error in your input files 
or you have some tweaking to  do. It is also 
possible that, given the binning of you data, 
that you really can’t resolve part (or all) of your 
source. If this is the case, consider refining the 

binning of the correlation model you have. On 
the other hand, if you are modeling real data 
and you really can’t change the binning of the 
correlation, it may be that a Gaussian fit is all 
you can really do. 

13. Will there be other representations of the 
source in the code in the future? Proba- 
bly not. We are considering a full rewrite in 
c++ which would allow for this, but we are not 
planning to  add this feature to  this FORTRAN 
code. 

14. How can I make a kernel when I don’t 
know the potential? Most likely, you are in 
trouble. Sometimes though, if you know the 
scattering length and or a few phaseshifts, you 
can work out the wavefunction and/or poten- 
tial. See refs. [18, 261 for a starting point. 

15. Why don’t you use inequality constraints 
in the inversion? We’d like to. An old version 
of this code actually did support it, but the er- 
ror estimation and propagation in the code was 
suspect so this feature was removed. To put it 
back in, we need to  do a lot of reading about 
“Active set methods.” If you really want it, you 
could figure it out and we’ll be happy to  put it 
in ... 
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Chapter 9 

CONCLUSIONS 

If you have comments, suggestions for improvements, 
or bug fixes (or even better, software patches!) do 
not hesitate to  contact one of the authors. In fact, 
we encourage it. Currently there are several areas of 
the code that could use substantial enhancement: 

1. A bigger selection of kernels 

2. Simpler user interface (porting FORTRAN 90 
would allow use to dynamic memory and hence 
remove the include files specifying the array di- 
mensions) 

3. Use of inequality constraints 

4. Use of the full data covariance matrix 

The TODO list in Appendix C has a more complete 
list. 
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Appendix A 

FILE MANIFEST 

A . l  Main Files 
1. Directories: 

HBTmanual. tex: this manual. 

HBTmanual . ps: this manual in postscript for- 
mat. 

conf ig/: configuration files 

doc/ : the document ation 

doc/example/: a simple pp example 

doc/plot -templates/: xmgr ace plot template 
include/: FORTRAN include files 

kernels/: any pre-built kernels 

lib/: 

sbin/: the scripts get installed here interacting spin-0 bosons 

src/ld/: main source codes 

sr c / kerne lgener at or s / : kernel 

emission. eps: a figure in the manual. 

bsplines . eps: another figure in the manual. 

example-plots . eps: yet another figure in the 
manual. 

3. Kernel generators: 

genmaIMFlD . f : IMF kernel generator 

genmaNI ID. f : kernel generator for non- 

genmaPPlD . f : proton kernel generator 

genmameson.f: combined 1D and 3D meson 

files to make the shared library 

generator 
source codes kernel generator 

src/scripts/: unprocessed scripts 

src/CRAB-addons/: extra codes for use with 
CRAB 

2. Documentation: 

CHANGELOG: log of major changes with each ver- 
sion 

README: read this first 

RELEASE: release version 

TODO: to do list 

COPYING: notes on copying and distributing the 

NEWS: 
codes 

no news is good news ... 

4. Other Programs: 

imagelD . f : the imaging code 

makcolD. f :  code to generate test correlations 

fitsource1D.f: code to fit Gaussians to im- 
aged sources 

optreslD. f: undocumented feature 

share1D.f: code shared by several of the 1D 

viewsourcelD. f: for viewing the source, with- 

mtx2xpm. cpp: gizmo to make a grey-scale 

codes 

out inverting again 

pixmap of a matrix 

5. Scripts: AUTHORS: list of the authors 

INSTALL: autoconf -generated installation in- configure: main configuration script gener- 
structions ated by autoconf 
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conf i g  . s t a t u s :  configuration script used by 

c r e a t e t e s t :  script for using makcolD 
pick-kernel: script for building and using the 

imageit: script for using imagelD 

3. Outputted Source: 
configure 

example-pp . imag: sample restored source from 

example-pp. knots: knots that define the b- 

example-pp. coef f s: coefficients of the b- 

example-pp. corin.  

spline. kernels 

6. Misc. Files: spline expansion. 

Makef i l e .  in :  template Makef i l e  (used by 
configure) 

configure.  in:  template configure file for use 
with autoconf 

configure: script to  generate Makef i les  for 
different machines (generated by 
au t  oconf 

example-pp. covmtx: covarience matrix of the 

example-pp . restored:  restored correlation 

example-pp. bestf  i t :  results of a Gaussian fit 

example-pp. optres:  output of an obscure, un- 

coefficients 

(compare to  example-pp. corin). 

to the source image. 

documented feature. 
7. Include Files: 

4. Logs: 
imf s . inc: particle properties for the IMF ker- 

kaons. inc: particle properties for the kaon example-pp. knotlog: log of minuit’s knot- 

pions.  inc: particle properties for the pion ker- 

ne1 

kernel finding adventures. 

nel 

example-pp . runlog: output of imageit. 

example-pp.f i t l o g :  output of f itit. 

protons.  inc: particle properties for the pro- A 3 . CRAB addons 
ton kernel 

constants .  inc: constants of the universe. Un- 1. Documentation: 
less you have warp capabilities, don’t 
mess with these. 

gridinfolD. inc: size of grid used in 1D ker- 
nels 2. Main Files: 

README-CRAB-addons: what passes for docu- 
mentation for this set of codes 

A.2 The example files 
1. Control/Include Files: 

crabHBTprogs . cpp: drop in replacement for 

crab-bindef sHBTprogs . cpp: drop in replace- 
ment for a CRAB binning file 

crab.  C 

example-pp. controls :  main control file 
example-pp. bspline: include file that sets the 

b-spline order 
example-pp .dimensions: include file that sets 

the dimensions of the image model 
space and the data space 

3. Utility Codes: 

crab-converter . cpp: converts CRAB output to 
a corinput . dat-like formatted corre- 
lation 

4. Phasemaker: 

2. Input Data: phasemaker. cpp: modified version of Scott 
Pratt’s code - this version generates 
Gaussian sources with exponential ha- 
10s 

example-.souin: sample input source. It is a 

example-pp . corin:  sample correlation using 
Gaussian with Ro = 4 fm. 

example-. souin. 5. Sourcemaker: 
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sourcemaker. cpp: code to generate source threevectors  . hpp: simple three-vector class 
functions from an OSCAR formatted 
particle freeze-out distribution f ourvectors . hpp: simple four-vector class 

randf uncs . hpp: code to generate random fv- tes te r .  cpp: tester code for the three and 
numbers with various distributions four vector classes 
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Appendix B 

CHANGELOG 

CHANGELOG file 
last updated 18 Jan 2002 

lversion 1.01 

Overall : 

1) new autoconf/automake configuration and build scheme 
2) new control scripts (hopefully more rational and more portable) 
3) new directory structure 
4) removed 3d codes. save those for version 2.0 
5) finished documentation 

+-----------+ 

+-----------+---------------------------------------------------------- 

- - - - - - - - 

makeco1D.f: 

1) fixed option 100 (load from disk) 
2) fixed case when data has un-equally spaced bins 

----------- 

genmaPP1D.f: 

fixed Coulomb bug introduced sometime in last few months 
------------ 

rawKsp1ine.f: 

I) unified all kernel loaders in one routine 
2) unified all kernel functions in one routine 
3) switched to higher order polynomial for interpolating kernel table 
4) added meta-data to kernel files 

---_--------- 

34 



+--------------+ 

lversion 0.09.31 

In imagelD: 

errors were computed incorrectly -- it is now fixed and the errors on 
S(r), integral of S(r), and restored correlation are much smaller now. 

+--------------+------------------------------------------------------- 

----------- 

In lib/: 

random number generator changed so that it generates a different sequence 
of random numbers each time it is called 

- - - - - - - - 

1) renamed them from genmaXX -> genmaXXlD because there are also 
genmaXX3D kernels in the works. The genma-mes0n.f code seems 
to be an exception to the naming scheme. Well, it is capable 
of producing 1D *and* 3D kernels for any mesons (you have to 
change particle.inc however) 
2) the format for saving the kernel is different. 
formatted and it specifically is: 

NSQ NSR 
K-O(l,l) K-0(1,2) K-0(1,3).. . . 
K-0(2,1) . . . 

now the format is 

1=0 
K-l(l,l) K-1(1,2) .... 

1= 1 

here, NSR and NSq are the number of steps in the r and q directions. 
K-1 is the lth componant of the kernel (expanded in legendre polynomials 
for 3D work). 
3) there are alot more bins in r and q.  
now, you don’t have to rebuild the kernel each time you change the binning 
in q 
4) no longer used interpolation to speed up the potentials. since the 
kernel doesn’t have to be remade so often, it can take longer to build 

also, the way i have it rigged 

In makco: 

1) makco has more choices 
2) more accurate because kernel better 

- - - - - - - - - 
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In the imagelD: 

1) b-splines 
2) equality constraints 
3) checks inequality constraints 
4) optimized knots found using faster/better minimization routine 
5) can output the optimal resolution matrix (some day i’ll have to explain 
what this is) 

--------------- 

Other stuff: 

I) is a 3D version of imagelD (it was in the first version of the new code 
i put on the web, but i took it out of the last one as it’s not really 
done testing yet) 
2) viewsourceXD codes, so you can remake the images if you only have the 
coefficients and knots. 
3) mtx2xpm, a little c++ code to make any of the matrices made by the 
codes into a grey-scale pixmaps 
4) fitsourcelD, a little code that fits gaussians to imaged sources and a 
script fitit to automate the process 
5) genmaDAlD and smearker (thanks Giuseppe!) 

------------ 

Overall : 

1) centralized controls whereever possible (e.g. main.controls) 
2) fewer include files to change and they are named more intelligently. 
3) using CERNLIB whereever possible (it’s reasonably fast and available 
everywhere) 
4) runs on more platforms: wrote it on Linux (egs f77) and on OSF (dec 
f ortran) 
5) scripts for automating some boring things and for giving more 
reasonable filenames to things 

- - - - - - - - 

I version 0.03 I 

1) added option of inputing source from disk into makc0.f 

2) simplified Makef ile 
3) fixed linking bug in installib.com (thanks to Dennis Reichhold 4/7/99) 

+------------+------------------------------------------------------- 

(this allows you to build model sources using other programs like RqMD) 

I version 0.02 I 
+------------+------------------------------------------------------- 

1) minor bug on some systems in lib/simplx.f 
2) minor fixes in makefile that allow programs to run under Linux 
3) added Woods-Saxon like source to makc0.f 
4) added realistic noise to sources from makc0.f 
5) fixed bug that made standard deviation of noise in randomnoise sqrt(2) 
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Appendix C 

To Do LIST 

1. Merge 3D codes 

2. Merge Giuseppe’s deutron-alpha kernel 

3. Merge Giuseppe’s smearker 

4. Clean up interface 

5. Option to  fix first knots (as in old code), option to  let *all* knots float 

6. Get opt. knots in 3D code (possibly use 1D code for this) 

7. Tweak opt. knot routines in ID, also maybe abstract them so can use in 3D 

8. More metadata in kernel. dat and kmtx. dat files 

9. Fix norm constraints 

10. Merge knotlist and source-coeff 

11. Generic kernel generator 

12. Frame dependence of 3D analysis 

13. Quality checks of outputted covariance matrix (is it symmetric and positive definite?) 

14. Remove dependence on CERNLIB 
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This is the README file for a set of programs 
that we developed to invert angle averaged 
correlation functions. You are free to use and 
modify the codes, we only ask that you reference 
either the manual or references [1,2,3] in any 
publications using results obtained with these 
codes. We are not responsible for any misuse 
of these codes. If you have any questions, 
comments, suggestions or bug fixes regarding 
the programs or the documentation, please 
contact David Brown at brownl70@llnl.gov or 
Pawel Danielewicz at danielewicz@nscl.msu.edu. 

1) unpack the tarball: 
% gunzip HBTprogs.tar.gz 
% tar xf HBTprogs-tar 

% ./configure 

% make install-data 

2) run configure: 

2) do a make install-data: 

3) read the manual in doc/ 
4) rerun the example in doc/example/ 

+----------------------------------------------- + 
IF YOU HAVE PROBLEMS 

If you have problems, there are two immediate 
sources of information: 
1) The INSTALL file which discribes the various 

2) The manual doc/HBTmanual.ps 
options of the configure script 

If this doesn't help, contact David Brown. His 
contact information is listed in the AUTHORS 
file. 

mailto:brownl70@llnl.gov
mailto:danielewicz@nscl.msu.edu
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